关键词: 教师资格证
扫码添加专属备考顾问
▪ 0元领取考点真题礼包
▪ 获取1对1备考指导
2018教资考试:中学《综合素质》逻辑思维能力(二)
(3)假言命题及其推理
假言命题是断定事物之间条件关系的命题。假言命题中,表示条件的肢命题称为假言命题的前件,表示依赖该条件而成立的命题称为假言命题的后件。假言命题因其所包含的联结词不同而具有不同的逻辑性质。
①充分条件假言命题及其推理
充分条件的假言命题是指前件是后件的充分条件的假言命题。如:如果你骄傲自满,那么你就要落后。
这就是一个充分条件的假言命题。因为,在这种假言命题中,前件“你骄傲自满”,就是后件“你要落后”的充分条件。因为一个人只要他有骄傲自满的思想存在,他就然要落后。但是,如果一个人没有骄傲自满的思想,他是否会落后呢?在这一命题中则未作断定。
例如:大作家萧伯纳成名后,舞蹈家邓肯向他求爱说:“如果你答应同我结婚,我会为你生下一个像你一样聪明,像我一样漂亮的孩子。”萧伯纳也如法炮制地说:“如果你嫁给我,生下来的孩子就会像我一样难看.像你一样愚蠢。”
充分条件假言命题联结词的语言标志通常是:“如果……那么………”“只要……就……”“若…………”等。充分条件假言命题的逻辑公式是:如果P,那么q。逻辑上则表示为:p→q(读作“P蕴涵q”)。
(4)负命题
①负命题
负命题也就是指命题的否定形式,通过对原命题断定情况的否定而作出的命题,就叫做负命题。
②负命题的种类
任何一个命题都可对其进行否定而得到一个相应的负命题。简单的性质命题的负命题实质上即为对当关系中的相应矛盾命题。
SAP的负命题是SOP;SOP的负命题是SAP;
SEP的负命题是SIP;SIP的负命题是SEP;
例如:并非“发亮的东西都是金子”;等值于“有的发亮的东西不是金子”。
根据负命题的性质,可以对以下两个命题的真假情况作出分析:
所有的青年学生都是团员。(假)
并非:所有的青年学生都是团员。(真)
当且仅当一个三角形是等边的,它才是等角的。(真)
并非:当且仅当一个三角形是等边的,它才是等角的。(假)
在上面的例子中,前一个例子由于“所有的青年学生都是团员”为假,所以它的负命题“并非所有的青年学生都是团员”为真。后一个例子由于否定的是一个真的充分要条件的假言命题,所以该负命题为假。
下面,我们着重说明一下各种复合命题的负命题。
①联言、选言命题的负命题。由于联言命题只要其肢命题有一个为假,该命题就是假的。因此,联言命题的负命题是一个相应的选言命题。选言命题因为有相容选言命题和不相容选言命题两种形式,相应地,其负命题也有两种形式。具体来说,相容选言命题的负命题为非P∧非q,不相容选言命题的负命题则为P且q或者非P∧非q。
“P∧q”的负命题等值于“非P∨非q”。如:
“李小明工作既勤奋又认真。”这个联言命题的负命题不是“李小明工作既不勤奋又不认真”这个联言命题,而是“李小明工作或者不勤奋,或者不认真”这样一个选言命题。
“P∨q”的负命题等值于“非P∧非q”。如:
“这个学生或者是共产党员,或者是共青团员。”这一选言命题的负命题就不是“这个学生或者不是共产党员,或者不是共青团员”这个选言命题而只能是“这个学生既不是共产党员,又不是共青团员”这样一个联言命题。
②假言命题的负命题。由于假言命题有三种,因此,也分别各有其相应的负命题。A.充分条件假言命题的负命题。“p→q”的负命题与“P∧非q”等值。
由于充分条件假言命题只有当其前件真后件假时,它才是假的,因此,一个充分条件假言命题的负命题,只能是一个相应的联言命题。如:
“如果小刘身体好,那么小刘就会学习好”,其负命题则为:“小刘身体好,但小刘学习不好”这样一个联言命题。
B.要条件假言命题的负命题,也只能是一个相应的联言命题。“只有P,才q”的负命题等值于“非 P∧q”。如:
“只有一个人骄傲自满,这个人才会落后。”其负命题则为:“一个人不骄傲自满,但这个人却落后了。”
C.充分要条件假言命题的负命题。由于充分要条件假言命题其前件既是后件的充分条件,又是后件的要条件,因而,对于一个充分要条件的假言命题来说,其负命题既可以是相应的充分条件假言命题的负命题,也可以是相应的要条件假言命题的负命题。如用公式来表示则为:“当且仅当P,则 q”的负命题等值于(P∧非q)∨(非P∧q)。
③“并非p”的负命题,也就是:“并非并非P”,即“P”。两个“并非”表示两次否定,而两次否定即意味着肯定,因而“并非P”的负命题等值于“p”。
(5)二难推理
二难推理是由两个假言命题和一个具有二肢的选言前提联合作为前提而构成的推理形式。它也称为假言选言推理。
3.三段论
所谓三段论,就是由一个共同词项把两个作为前提的直言命题联结起来,得出一个新的直言命题作为结论的推理。三段论由三个直言命题构成,其中两个是前提,一个是结论。结论的主项是小项(用S表示),含有小项的前提是小前提;结论的谓项是大项(用P表示),含有大项的前提是大前提;两个前提共有的词项叫做中项(用M表示)。
相关推荐:
手机登录下载
微信扫码下载
微信扫一扫,即可下载